[1]牟智佳,俞 显.知识图谱分析视角下学习分析的学术群体与热点追踪——对历年“学习分析与知识国际会议”的元分析[J].远程教育杂志,2016,(02):054-63.[doi:10.15881/j.cnki.cn33-1304/g4.2016.02.008]
 Mou Zhijia,Yu Xian.The Academic Groups and Hotspots of Learning Analytics from the Perspective of Knowledge Map: A Meta-analysis of International Conference on Learning Analytics and Knowledge over the Years[J].Distance Education Journal,2016,(02):054-63.[doi:10.15881/j.cnki.cn33-1304/g4.2016.02.008]
点击复制

知识图谱分析视角下学习分析的学术群体与热点追踪——对历年“学习分析与知识国际会议”的元分析()
分享到:

《远程教育杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年02期
页码:
054-63
栏目:
学习新论
出版日期:
2016-03-23

文章信息/Info

Title:
The Academic Groups and Hotspots of Learning Analytics from the Perspective of Knowledge Map: A Meta-analysis of International Conference on Learning Analytics and Knowledge over the Years
作者:
牟智佳;俞 显
1.北京师范大学 教育学部,北京 100875;2.宁波市教育考试院,浙江宁波 315000
Author(s):
Mou Zhijia;Yu Xian
1. Faculty of Education, Beijing Normal University, Beijing 100875;2. Ningbo Education Examinations Authority, Ningbo Zhejiang 315000
关键词:
知识图谱学习分析社会网络分析可视化研究热点
Keywords:
Knowledge map Learning analytics Social network analysis Visualization Hotspots of research
分类号:
G420
DOI:
10.15881/j.cnki.cn33-1304/g4.2016.02.008
文献标志码:
A
摘要:
“学习分析与知识国际会议”是反映学习分析研究现状与趋势的一个重要风向标。以历年会议论文为研究样本来源,以元分析、知识图谱、社会网络分析为研究方法,从研究者国籍、学科背景、关键文献、关键词、研究主题和研究方法六个方面对文献进行内容分析。研究结果显示:(1)以美国、英国、加拿大、澳大利亚等为主导的国家引领学习分析的研究热点,并形成了以教育学、计算机科学与工程、人工智能、心理学与认知科学为主导学科学术群体的合作研究态势;(2)历年研究关键词分别呈现出社会网络分析、教育文本分析和可视化、大规模开放在线课程、教育数据挖掘和计算机支持协作学习共同体的演变趋势;(3)通过聚类分析形成了以生成预测模型、数据集驱动的研究、语义对话与自动作文评分、知识建构与能力转化等为代表的研究主题;(4)以设计研究法、文本分析法、混合研究法、教育数据挖掘等为代表的研究方法呈现为新型研究范式。最后基于分析结果对学习分析研究热点进行了讨论。
Abstract:
The International Conference on Learning Analytics and Knowledge is an important indicator that reflects the research status and trend of learning analytics. The sample of the study including papers from the conference was analyzed through the methodology that consisted of meta-analysis, knowledge map and social network analysis. The paper conducted content analysis from six aspects including researcher’s nationality, academic background, key literatures, keywords, research theme, and research methodology. Four conclusions were made at last. Firstly, the learning analytics research was leaded by the countries comprising America, the United Kingdom, Canada and Australia and formed the collaborative trend with oriented disciplines including pedagogy, computer science and engineering, artificial intelligence, psychology and cognitive science. Secondly, five forms of keywords showed the research evolution trend respectively, which is social network analysis, educational text analysis and visualization, massive open online courses, educational data mining and computer supported collaborative learning. Thirdly, research themes contain generating predictive model, data sets driven research, semantic dialogue and automatic writing score, knowledge construction and capacity transformation. Fourthly, the representative research methods involving design-based research, text analysis, mixed method, education data mining become new research paradigm. Finally, the research hotspots were discussed based on the previous analysis.

相似文献/References:

[1]舒忠梅,徐晓东,屈琼斐,等.基于数据挖掘的学生投入模型与学习分析[J].远程教育杂志,2015,(01):039.[doi:10.15881/j.cnki.cn33-1304/g4.2015.01.004]
[2]花燕锋,张龙革.基于MOOCs的多元同心学习分析模型构建与应用研究[J].远程教育杂志,2014,(05):104.
 Hua Yanfeng,Zhang Longge.Research on Construction and?Application?of Multiplex and?Concentric?Learning Analytics Model Based on MOOCs[J].Distance Education Journal,2014,(02):104.
[3]徐 鹏,王以宁,刘艳华,等.大数据视角分析学习变革——美国《通过教育数据挖掘和学习分析促进教与学》报告解读及启示[J].远程教育杂志,2013,(06):011.
 Peng Xu,Yining Wang,Yanhua Liu,et al.An Analysis of the Learning Innovation from the Perspective of Big Data: An Analysis of the U.S. Report of Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics and Its Enlightenment[J].Distance Education Journal,2013,(02):011.
[4]顾小清,胡艺龄,蔡慧英.MOOCS的本土化诉求及其应对[J].远程教育杂志,2013,(05):003.
 Gu Xiaoqing,Hu Yiling,Cai Huiying.Appeal and Response to the Development of MOOCs’ Localization in China[J].Distance Education Journal,2013,(02):003.
[5]吴永和,陈 丹,曹 盼,等.学习分析:教育信息化的新浪潮[J].远程教育杂志,2013,(04):011.
 Wu Yonghe,Chen Dan,Cao Pan,et al.Learning Analytics: The New Coming Wave of Education Information[J].Distance Education Journal,2013,(02):011.
[6]郁晓华,顾小清.学习活动流:一个学习分析的行为模型[J].远程教育杂志,2013,(04):020.
 Yu xiaohua,Gu xiaoqing.Learning Activity Streams:A Behavior Model for Learning Analytics[J].Distance Education Journal,2013,(02):020.
[7]陈瑜林.我国教育技术学者合著网络知识图谱构建研究[J].远程教育杂志,2012,(06):011.[doi:10.15881/j.cnki.cn33-1304/g4.2012.06.006]
 Chen Yulin.A Study of Construction of Mapping Knowledge Domain on Chinese Educational Technology Scholars’ Coauthor Network[J].Distance Education Journal,2012,(02):011.[doi:10.15881/j.cnki.cn33-1304/g4.2012.06.006]
[8]顾小清,张进良,蔡慧英.学习分析:正在浮现中的数据技术[J].远程教育杂志,2012,(01):018.[doi:10.15881/j.cnki.cn33-1304/g4.2012.01.007]
 Gu Xiaoqing,Zhang Jinliang,Cai Huiying.Learning Analytics:The emerging data technology[J].Distance Education Journal,2012,(02):018.[doi:10.15881/j.cnki.cn33-1304/g4.2012.01.007]
[9]蔡建东,马 婧.Web2.0教育应用领域知识图谱研究[J].远程教育杂志,2012,(02):057.[doi:10.15881/j.cnki.cn33-1304/g4.2012.02.009]
 Cai Jiandong,Ma Jing.Knowledge Mapping Research on Foreign Web 2.0 in Education[J].Distance Education Journal,2012,(02):057.[doi:10.15881/j.cnki.cn33-1304/g4.2012.02.009]
[10]张进良,何高大.学习分析:助推大数据时代高校教师在线专业发展[J].远程教育杂志,2014,(01):056.[doi:10.15881/j.cnki.cn33-1304/g4.2014.01.008]
 Zhang Jinliang,& He gaoda.Learning Analytics: Boosting Online Professional Development of University Teachers in Big Data Era[J].Distance Education Journal,2014,(02):056.[doi:10.15881/j.cnki.cn33-1304/g4.2014.01.008]

备注/Memo

备注/Memo:
基金项目:本文系2014年全国教育科学“十二五”规划教育部重点课题“基于教育大数据的学习分析工具设计与应用研究”(课题编号:DCA140230)、2014年北京师范大学自主科研基金重点项目“电子书包中基于大数据的学生个性化信息挖掘与应用研究”(课题编号:00305-310400080)和2015年国家留学基金委建设高水平大学公派研究生项目的研究成果。
更新日期/Last Update: 2016-03-23