[1]丁继红,刘华中.影响教育资源选择的学习者模型构建[J].远程教育杂志,2017,(04):097-103.[doi:10.15881/j.cnki.cn33-1304/g4.2017.04.010]
 Ding Jihong,Liu Huazhong.Construction of a Learner Model Based on the Influencing Factors of Educational Resources’ Choice[J].Distance Education Journal,2017,(04):097-103.[doi:10.15881/j.cnki.cn33-1304/g4.2017.04.010]
点击复制

影响教育资源选择的学习者模型构建()
分享到:

《远程教育杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年04期
页码:
097-103
栏目:
学术视点
出版日期:
2017-07-12

文章信息/Info

Title:
Construction of a Learner Model Based on the Influencing Factors of Educational Resources’ Choice
作者:
丁继红; 刘华中
1.浙江工业大学 教育科学与技术学院,浙江杭州 310023;2. 华中科技大学,计算机科学与技术学院,湖北武汉430074
Author(s):
Ding Jihong; Liu Huazhong
1.School of Educational Science and Technology, Zhejiang University of Technology, Hangzhou Zhejiang 310023;2.School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan Hubei 430074
关键词:
学习者模型学习分析个性化教育开放教育
Keywords:
Learner model Learning analysis Individualized education Open education
分类号:
G420
DOI:
10.15881/j.cnki.cn33-1304/g4.2017.04.010
文献标志码:
A
摘要:
为全面描述学习者特征以满足自适应学习和精准化服务需求,梳理了学习者模型的相关文献,归纳出影响学习者资源选择偏好的候选因素;采用德尔菲法抽取影响学习者资源选择偏好的核心因素及其相互关系;通过构建邻接矩阵和可达矩阵,利用解释结构模型方法(ISM)对影响学习者资源选择偏好的核心因素进行层级划分,绘制了因素间的ISM逻辑层次关系图。据此构建包括学习者偏好特征、行为绩效、学习情境和学习动力系统的学习者特征模型,实现对学习者的多维度、全方位描述。
Abstract:
It is necessary to build a comprehensive and accurate learner model for implementing adaptive learning content and accurate learning services. We review the corresponding literature on learning model, and summarize the candidate factors that impact learners’ selection of resources, and then we extract the core factors which influence learners’ selection of resource through Delphy method. After that, the binary relationship table among the core influencing factors is established by exploiting interpretative structural modeling method (ISM).Then, the adjacency matrix and reachability matrix are constructed based on the binary relationship table, IMS diagram which reflects the logical and hierarchy relations among the influence factors is obtained afterward. According to the ISM diagram, a learner characteristic model which includes the learner’s preference, behavior performance, learning situation, learning strategy and motivation mechanism is constructed, and realizes the multi-dimensional and all-round description of the learner.

相似文献/References:

[1]舒忠梅,徐晓东,屈琼斐,等.基于数据挖掘的学生投入模型与学习分析[J].远程教育杂志,2015,(01):039.[doi:10.15881/j.cnki.cn33-1304/g4.2015.01.004]
[2]花燕锋,张龙革.基于MOOCs的多元同心学习分析模型构建与应用研究[J].远程教育杂志,2014,(05):104.
 Hua Yanfeng,Zhang Longge.Research on Construction and?Application?of Multiplex and?Concentric?Learning Analytics Model Based on MOOCs[J].Distance Education Journal,2014,(04):104.
[3]徐 鹏,王以宁,刘艳华,等.大数据视角分析学习变革——美国《通过教育数据挖掘和学习分析促进教与学》报告解读及启示[J].远程教育杂志,2013,(06):011.
 Peng Xu,Yining Wang,Yanhua Liu,et al.An Analysis of the Learning Innovation from the Perspective of Big Data: An Analysis of the U.S. Report of Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics and Its Enlightenment[J].Distance Education Journal,2013,(04):011.
[4]顾小清,胡艺龄,蔡慧英.MOOCS的本土化诉求及其应对[J].远程教育杂志,2013,(05):003.
 Gu Xiaoqing,Hu Yiling,Cai Huiying.Appeal and Response to the Development of MOOCs’ Localization in China[J].Distance Education Journal,2013,(04):003.
[5]吴永和,陈 丹,曹 盼,等.学习分析:教育信息化的新浪潮[J].远程教育杂志,2013,(04):011.
 Wu Yonghe,Chen Dan,Cao Pan,et al.Learning Analytics: The New Coming Wave of Education Information[J].Distance Education Journal,2013,(04):011.
[6]郁晓华,顾小清.学习活动流:一个学习分析的行为模型[J].远程教育杂志,2013,(04):020.
 Yu xiaohua,Gu xiaoqing.Learning Activity Streams:A Behavior Model for Learning Analytics[J].Distance Education Journal,2013,(04):020.
[7]顾小清,张进良,蔡慧英.学习分析:正在浮现中的数据技术[J].远程教育杂志,2012,(01):018.[doi:10.15881/j.cnki.cn33-1304/g4.2012.01.007]
 Gu Xiaoqing,Zhang Jinliang,Cai Huiying.Learning Analytics:The emerging data technology[J].Distance Education Journal,2012,(04):018.[doi:10.15881/j.cnki.cn33-1304/g4.2012.01.007]
[8]张进良,何高大.学习分析:助推大数据时代高校教师在线专业发展[J].远程教育杂志,2014,(01):056.[doi:10.15881/j.cnki.cn33-1304/g4.2014.01.008]
 Zhang Jinliang,& He gaoda.Learning Analytics: Boosting Online Professional Development of University Teachers in Big Data Era[J].Distance Education Journal,2014,(04):056.[doi:10.15881/j.cnki.cn33-1304/g4.2014.01.008]
[9]郁晓华,顾小清.开放教育下的学习分析——2015 AECT夏季研讨会评述与延伸[J].远程教育杂志,2015,(05):014.[doi:10.15881/j.cnki.cn33-1304/g4.2015.05.002]
 Yu Xiaohua,Gu Xiaoqing.Learning Analytics in Open Education: A Review and Reflection on 2015 AECT Summer International Research Symposium[J].Distance Education Journal,2015,(04):014.[doi:10.15881/j.cnki.cn33-1304/g4.2015.05.002]
[10]牟智佳,俞 显.知识图谱分析视角下学习分析的学术群体与热点追踪——对历年“学习分析与知识国际会议”的元分析[J].远程教育杂志,2016,(02):054.[doi:10.15881/j.cnki.cn33-1304/g4.2016.02.008]
 Mou Zhijia,Yu Xian.The Academic Groups and Hotspots of Learning Analytics from the Perspective of Knowledge Map: A Meta-analysis of International Conference on Learning Analytics and Knowledge over the Years[J].Distance Education Journal,2016,(04):054.[doi:10.15881/j.cnki.cn33-1304/g4.2016.02.008]

备注/Memo

备注/Memo:
基金项目:本文系浙江省教育厅科研项目“多维关联分析的个性化教育资源推荐及主动服务模式研究”(项目编号:Y201635710)和浙江省教育科学规划课题“‘异地同步网络教研’的环境构建、模式创新及绩效评价研究”(项目编号:2017SCG256)的研究成果。
更新日期/Last Update: 2017-07-13