[1]郁晓华,顾小清.学习活动流:一个学习分析的行为模型[J].远程教育杂志,2013,(04):020-28.
 Yu xiaohua,Gu xiaoqing.Learning Activity Streams:A Behavior Model for Learning Analytics[J].Distance Education Journal,2013,(04):020-28.
点击复制

学习活动流:一个学习分析的行为模型()
分享到:

《远程教育杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年04期
页码:
020-28
栏目:
理论前沿
出版日期:
2013-08-01

文章信息/Info

Title:
Learning Activity Streams:A Behavior Model for Learning Analytics
作者:
郁晓华 ; 顾小清
华东师范大学 教育信息技术学系,上海 200062
Author(s):
Yu xiaohua ; Gu xiaoqing
Department of Educational Information & Technology, East China Normal University, Shanghai 200062
关键词:
学习分析学习活动流学习行为学习情境智慧教育
Keywords:
Learning analytics Learning activity streams Learning behavior Learning context Smart education
分类号:
G420
文献标志码:
A
摘要:
智慧教育体现了教育信息化发展的新境界,表达了一种技术以智慧性方式促进教育变革与创新的诉求,这一目标的实现离不开学习分析技术。学习分析的核心就是观察和理解学习行为,以倒溯方式考察影响行为产生的需要、动机等因素,以及行为所携带的目的、个性、环境等元素,从而加以利用以优化学习过程及其发生的环境。而一个好的行为模型将大大助力于对这些信息的收集、分析与理解。学习活动流模型的提出补充了以往学习行为分析所没考虑的学习来源的多元化以及学习活动的持续性问题。借鉴活动流的描述机制,情景化注意元数据被加以改造得到学习活动流的描述模型,而基于学习活动流的学习情境分析探讨了对这一行为模型的学习分析应用,并以信息感知和资源推送为例展示了其实践应用。
Abstract:
As a new realm of the development of e-education, smart education expresses a demand of using technology in intelligent ways to promote educational revolution and innovation. The achievement of this objective is inseparable from learning analytics. The core of learning analytics is to observe and understand learning behaviors. By investigating the factors (e.g. needs, motivations) which impact these behaviors, and the information (e.g. purpose, personality, context) which is carried by these behaviors, the learning process and learning environment can be optimized. A good behavior model will greatly contribute to collecting, analyzing and understanding above-mentioned information. So the concept of learning activity streams can solve the problems of diversification of learning sources and persistence of learning process which haven’t been considered before. The description model of learning activity streams is built by learning from description mechanisms of activity streams and contextualized attention metadata. Finally, its practical applications are discussed on the theme of learning context analysis, and demonstrated through two cases of information perception and resource push.

相似文献/References:

[1]舒忠梅,徐晓东,屈琼斐,等.基于数据挖掘的学生投入模型与学习分析[J].远程教育杂志,2015,(01):039.[doi:10.15881/j.cnki.cn33-1304/g4.2015.01.004]
[2]花燕锋,张龙革.基于MOOCs的多元同心学习分析模型构建与应用研究[J].远程教育杂志,2014,(05):104.
 Hua Yanfeng,Zhang Longge.Research on Construction and?Application?of Multiplex and?Concentric?Learning Analytics Model Based on MOOCs[J].Distance Education Journal,2014,(04):104.
[3]徐 鹏,王以宁,刘艳华,等.大数据视角分析学习变革——美国《通过教育数据挖掘和学习分析促进教与学》报告解读及启示[J].远程教育杂志,2013,(06):011.
 Peng Xu,Yining Wang,Yanhua Liu,et al.An Analysis of the Learning Innovation from the Perspective of Big Data: An Analysis of the U.S. Report of Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics and Its Enlightenment[J].Distance Education Journal,2013,(04):011.
[4]顾小清,胡艺龄,蔡慧英.MOOCS的本土化诉求及其应对[J].远程教育杂志,2013,(05):003.
 Gu Xiaoqing,Hu Yiling,Cai Huiying.Appeal and Response to the Development of MOOCs’ Localization in China[J].Distance Education Journal,2013,(04):003.
[5]吴永和,陈 丹,曹 盼,等.学习分析:教育信息化的新浪潮[J].远程教育杂志,2013,(04):011.
 Wu Yonghe,Chen Dan,Cao Pan,et al.Learning Analytics: The New Coming Wave of Education Information[J].Distance Education Journal,2013,(04):011.
[6]顾小清,张进良,蔡慧英.学习分析:正在浮现中的数据技术[J].远程教育杂志,2012,(01):018.[doi:10.15881/j.cnki.cn33-1304/g4.2012.01.007]
 Gu Xiaoqing,Zhang Jinliang,Cai Huiying.Learning Analytics:The emerging data technology[J].Distance Education Journal,2012,(04):018.[doi:10.15881/j.cnki.cn33-1304/g4.2012.01.007]
[7]张进良,何高大.学习分析:助推大数据时代高校教师在线专业发展[J].远程教育杂志,2014,(01):056.[doi:10.15881/j.cnki.cn33-1304/g4.2014.01.008]
 Zhang Jinliang,& He gaoda.Learning Analytics: Boosting Online Professional Development of University Teachers in Big Data Era[J].Distance Education Journal,2014,(04):056.[doi:10.15881/j.cnki.cn33-1304/g4.2014.01.008]
[8]郁晓华,顾小清.开放教育下的学习分析——2015 AECT夏季研讨会评述与延伸[J].远程教育杂志,2015,(05):014.[doi:10.15881/j.cnki.cn33-1304/g4.2015.05.002]
 Yu Xiaohua,Gu Xiaoqing.Learning Analytics in Open Education: A Review and Reflection on 2015 AECT Summer International Research Symposium[J].Distance Education Journal,2015,(04):014.[doi:10.15881/j.cnki.cn33-1304/g4.2015.05.002]
[9]牟智佳,俞 显.知识图谱分析视角下学习分析的学术群体与热点追踪——对历年“学习分析与知识国际会议”的元分析[J].远程教育杂志,2016,(02):054.[doi:10.15881/j.cnki.cn33-1304/g4.2016.02.008]
 Mou Zhijia,Yu Xian.The Academic Groups and Hotspots of Learning Analytics from the Perspective of Knowledge Map: A Meta-analysis of International Conference on Learning Analytics and Knowledge over the Years[J].Distance Education Journal,2016,(04):054.[doi:10.15881/j.cnki.cn33-1304/g4.2016.02.008]
[10]宗 阳,郑勤华,张 玄,等.学习分析视角下MOOCs形成性测试难度系数研究[J].远程教育杂志,2016,(03):096.[doi:10.15881/j.cnki.cn33-1304/g4.2016.03.011]
 Zong Yang,Zheng Qinhua,Zhang Xuan,et al.The Research about Difficulty Coefficient of MOOCs’ Formative Tests in the Perspective of Learning Analytics[J].Distance Education Journal,2016,(04):096.[doi:10.15881/j.cnki.cn33-1304/g4.2016.03.011]

备注/Memo

备注/Memo:
基金项目:本文系2011年度华东师范大学优势重点学科/新兴交叉学科博士研究生科研创新项目(编号:CX2011017)的部分成果; 教育部新世纪人才计划“基于个人数字终端的信息化创新应用研究:资源、服务及应用实例”(编号:NCET-11-0140)部分成果。
更新日期/Last Update: 2013-08-01