[1]卢 潇,胡凡刚.基于教育大数据的教育虚拟社区交互设计研究[J].远程教育杂志,2017,(05):084-92.[doi:10.15881/j.cnki.cn33-1304/g4.2017.05.008]
 Lu Xiao,Hu Fangang.Research on the Interaction Design in Educational Virtual Community based on Big Data of Education[J].Distance Education Journal,2017,(05):084-92.[doi:10.15881/j.cnki.cn33-1304/g4.2017.05.008]
点击复制

基于教育大数据的教育虚拟社区交互设计研究()
分享到:

《远程教育杂志》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2017年05期
页码:
084-92
栏目:
学术视点
出版日期:
2017-09-20

文章信息/Info

Title:
Research on the Interaction Design in Educational Virtual Community based on Big Data of Education
作者:
卢 潇; 胡凡刚
曲阜师范大学 传媒学院,山东日照 276826
Author(s):
Lu Xiao; Hu Fangang
School of Communication, Qufu Normal University, Rizhao Shangdong 276826
关键词:
教育大数据教育虚拟社区交互实证分析设计
Keywords:
Big data of education Educational virtual community Interaction Empirical analysis Design
分类号:
G434
DOI:
10.15881/j.cnki.cn33-1304/g4.2017.05.008
文献标志码:
A
摘要:
当前,教育大数据凭借为教育决策提供数据支持的优势在教育教学过程中发挥重要作用,受到教育界的广泛关注。教育虚拟社区作为网络教育的应用及发展形式,如何利用大数据为社区交互提供指导值得探究。因此,从教师、学生、目标内容、资源、文化五个层面详细阐述了教育大数据对教育虚拟社区交互的作用蕴涵,并以“学习科学与技术”虚拟社区的大数据为个案,采用问卷调查法从主体因素、支撑因素、目标内容因素、资源因素、文化因素五个方面实证分析了教育虚拟社区交互效果影响因素,结果表明:教师、学生、平台、网络环境、目标、内容、资源、社区归属感和社区氛围等因素有利于提升社区交互效果,在具体交互过程中要发挥教育大数据在社区交互中的支持作用,有针对性地对社区交互进行主体设计、支撑因素设计、目标内容设计、资源设计、文化设计,以期提升社区交互效果。
Abstract:
Big data of education has been widely concerned in the education sector with the advantage of providing data support for educational decision. Educational virtual community as the application and development of network, it is worth exploring how to use big data to provide guidance for interaction. In order to enhance educational virtual community interaction effect, we carried out the study. Firstly, we analyzed positive effect of educational big data from teacher, student, target & content, resource and culture aspect. Secondly, taking "learning science and technology" virtual community as an example, we used questionnaire method and made an empirical analysis on the influencing factors of the interactive effect in educational virtual community from the subject factors, support factors, target & content factors, resource factors and cultural factors. The results showed that teacher, student, platform, network environment, goal, content, resources, strong sense of belonging and good atmosphere are helpful to promote community interaction. Thirdly, according to the influencing factors and the positive effect of educational big data, we designed community interaction from the five aspects in order to improve the interactive effect.

相似文献/References:

[1]牟智佳.电子书包中基于教育大数据的个性化学习评价模型与系统设计[J].远程教育杂志,2014,(05):090.
 Mou Zhijia.Research on Model of Personalized Learning Evaluation System Based on Educational Big Data in the Electronic Schoolbag[J].Distance Education Journal,2014,(05):090.
[2]胡凡刚,仇秀娟,刘 玮,等.影响教育虚拟社区中学习动机激发因素的实证分析[J].远程教育杂志,2013,(04):052.
 Hu Fangang,Chou Xiujuan Liu Wei,Zhang Chunxia.An Empirical Analysis of the Learning Motivating Factors Affecting Educational Virtual Community[J].Distance Education Journal,2013,(05):052.
[3]刘永琪,胡凡刚.翻转课堂教学模式的伦理省思[J].远程教育杂志,2015,(06):078.[doi:10.15881/j.cnki.cn33-1304/g4.2015.06.011]
 Liu Yongqi,Hu Fangang.The Ethical Examination on the Teaching Model of Flipped Classroom[J].Distance Education Journal,2015,(05):078.[doi:10.15881/j.cnki.cn33-1304/g4.2015.06.011]
[4]孙洪涛,郑勤华.教育大数据的核心技术、应用现状与发展趋势[J].远程教育杂志,2016,(05):041.[doi:10.15881/j.cnki.cn33-1304/g4.2016.05.004]
 Sun Hongtao,Zheng Qinhua.The Technology, Application and Trends of Educational Big Data[J].Distance Education Journal,2016,(05):041.[doi:10.15881/j.cnki.cn33-1304/g4.2016.05.004]
[5]詹立彩,陈凤燕,孟世敏.教育大数据视域下在线校园管理的技术支撑、动力结构与机制——基于系统动力理论研究范式[J].远程教育杂志,2016,(06):070.[doi:10.15881/j.cnki.cn33-1304/g4.2016.06.009]
 Zhan Licai,Chen Fengyan,Meng Shimin.Technological Support, Dynamic Structure and Mechanism of Online Campus Management from the Perspective of Big Data[J].Distance Education Journal,2016,(05):070.[doi:10.15881/j.cnki.cn33-1304/g4.2016.06.009]
[6]孟志远,卢 潇,胡凡刚.大数据驱动教育变革的理论路径与应用思考——首届中国教育大数据发展论坛探析[J].远程教育杂志,2017,(02):009.[doi:10.15881/j.cnki.cn33-1304/g4.2017.02.002]
 Meng Zhiyuan,Lu Xiao,Hu Fangang.Theoretical Path and Application Thinking on the Realistic Way of Big Data-Driven Education: A Review of the First Chinese Education Big Data Development Forum[J].Distance Education Journal,2017,(05):009.[doi:10.15881/j.cnki.cn33-1304/g4.2017.02.002]
[7]余明华,冯 翔,祝智庭.人工智能视域下机器学习的教育应用与创新探索[J].远程教育杂志,2017,(03):011.[doi:10.15881/j.cnki.cn33-1304/g4.2017.03.002]
 Yu Minghua,Feng Xiang,Zhu Zhiting.The Educational Applications and Innovative Explorations of Machine Learning in the view of Artificial Intelligence[J].Distance Education Journal,2017,(05):011.[doi:10.15881/j.cnki.cn33-1304/g4.2017.03.002]
[8]刘清堂,王 洋,雷诗捷,等.教育大数据视角下的学习分析应用研究与思考[J].远程教育杂志,2017,(03):071.[doi:10.15881/j.cnki.cn33-1304/g4.2017.03.008]
 Liu Qingtang,WangYang,Lei Shijie,et al.The Application Study of Learning Analytics Supported by Educational Data[J].Distance Education Journal,2017,(05):071.[doi:10.15881/j.cnki.cn33-1304/g4.2017.03.008]
[9]方海光,仝赛赛,杜婧敏,等.基于区块链技术的智慧学习机器人设计研究——面向大规模学习服务系统的智慧学习机器人[J].远程教育杂志,2017,(04):042.[doi:10.15881/j.cnki.cn33-1304/g4.2017.04.004]
 Fang Haiguang,Tong Saisai,Du Jingmin,et al.Smart Learning Robot Design based on Blockchain Technology: Smart Learning Robot oriented Large-Scale Learning Services System[J].Distance Education Journal,2017,(05):042.[doi:10.15881/j.cnki.cn33-1304/g4.2017.04.004]
[10]方 旭,韩锡斌.高校教师教学大数据技术行为意向影响因素研究——基于清华“学堂在线”的调查[J].远程教育杂志,2017,(06):076.[doi:10.15881/j.cnki.cn33-1304/g4.2017.06.009]
 Fang Xu,Han Xibin.Research of Influencing Factor of Teaching Big Data Technology of College Teachers:Based on Tsinghua XuetangX’s Investigation[J].Distance Education Journal,2017,(05):076.[doi:10.15881/j.cnki.cn33-1304/g4.2017.06.009]

备注/Memo

备注/Memo:
基金项目:本文系国家社科基金教育学一般项目“教育虚拟社区伦理的作用机制及评价研究”(项目编号:BEA130026)及山东省教学改革项目“教育技术学本科专业‘厚基础+精技能’人才培养体系的研究与实践”(项目编号:2015M099)的研究成果。
更新日期/Last Update: 2017-09-21